

CBM The forgotten Factor Areal Desorption Efficiency

Where Does CBM fit in the resource Triangle

Accuracy of reserves

- Reserves should be expressed as a Range.
- The only time reserves can be 100% accurate is at abandonment of the field.
- Conventional fields: To firm up reserves position usually requires production of 2/3 reserve. (That is why range is important)

What makes up a Reserve.

- Reserve = Recovery Factor X Gas in Place Number
- Recovery factor
 - Extractable Quantity = GIP X RF 0 < t < t_(abandonment)
 - t_(abandonment) Determined by mechanical constraints
- Economic Factor
 - Reserves = Σ EF_{Year i} (Extractable Quantity)
 - Sum while EF_{Year i} (Extractable Quantity) is economic

Reserve Estimate is an estimate of economic deliverability over a period of time.

RESERVES

 Reserve definitions are open to interpretation and this is unavoidable.

Common mistakes

- Based on isotherms which ignore areal desorption scaling factor
- Ignore deliverability
 - Reserves incorporate a time period
- Ignore economics
 - Many reserve certifications have a clause that economics not included in the analysis Beware only half the job is done.

Recover Factor - Critical issues

Conventional Gas

- Drive Mechanism
- Areal Sweep Efficiency
- Abandonment Pressure

CBM

- Saturation Status
- Areal Desorption Efficiency
 - Permeability (Scale up)
 - Well spacing
 - Cleat spacing
 - Porosity/permeability distribution

Methods of Recovery Factor Determination

- Isotherm (Upper limit).
- Analogy: similar CBM fields
- Simulation
- Decline Curves

Adsorption Isotherm

RF'= (Initial Sorb gas conc. - Abandonment Sorb gas)/ Initial Sorb gas conc.

$$RF' = 86\%$$

RF from Isotherm

- Independent of permeability and time
 - Reserves increase with depth
 - So as perm decreases the reserves increase.
- Extremely optimistic as it does not take in to account areal sweep efficiency.
- RECOVER FACTOR
- RF = RF(Isotherm) X Areal Desorption Efficiency

How do you calculate Areal Desorption Efficiency?

Areal desorption efficiency =

Reserves

RF(Isotherm) * Gas in Place

- But we have two unknowns one equation.
- This is why RF from isotherms fall apart because we require to calculate reserves

By Analogy

- Profiles from similar basins.
- Supporting simulation outcomes

US Basins

Simulation

- Requires production tests to calibrate Non unique solution!
- The assumptions used to calibrate the model should never be changed (Up-scaling) i.e Skin.
- Even with many years of production the solution can vary ±50% - Non Unique
- Used as a Planning Tool: (Best development Strategy)

Decline Curve analysis

- Applicable only when production is pseudo-steady state, that is, Development stage
- Assumes production environment remains unchanged during the forecast period.

Recovery Factors

- Example of US low permeable coal fields show recovery factors calculated from decline curves have recovery factor of the order of 20% (Note highly variable)
- RF (Isotherm) = 86%
- Areal Desorption Efficiency = 23%

Reserves

 Reserve estimates should be presented as a range NOT a single Number.

- Recovery Factor calculated from Isotherm will deliver an optimistic Reserve Estimate.
 - Requires Scaling Factor
 - » Areal Desorption Efficiency

