Variability of Coal Seam Parameters as They Impact on Outbursts

ACARP Project C11030 CSIRO Petroleum

Mike Wold, Luke Connell and Xavier Choi,

Context of the Outburst Problem

- Safety is paramount must maintain or improve
- Economic pressure to increase development rates
- New mines are approaching outburst conditions
- Every mine has its own conditions
- Variability of conditions within mines
- Existing controls may be conservatively uniform
- Potential to further optimise outburst management

Interactive factors in outburst mechanisms

gas diffusion, desorption, permeability, relative permeability

stress

pre-mining, mining induced, effective stress, coal yield strength

structure, scale effects, porosity (energy storage)

drainage rates, development rates, desorption rates, pore-pressure gradients

Influence of gas pressure gradient on outburst initiation

Gas Pressure (MPa)

Distance from mine face (m)

Impact of gas composition and drainage on pressure gradient

After initiation – dynamic evolution model

- Gas desorption
- Coal deformation and failure
- Coal fragmentation
- Gas dynamics and transport of outburst coal
- Integrated model (initiation + evolution)

Dynamic evolution model

weak coal

strong coal

Seeking options for expanded criteria – taking a mechanistic view

Stage of evolution	Driving force	Resisted by	Important variables
Initiation	Quasi-static pressure gradient within intact and yielding coal	Tensile and compressive strength	 Reservoir pressure Permeability Isotherm Composition
Post-initiation dynamic CSIRO	Dynamic energy release of compressed gas in rapidly fragmenting coal	Remnant strength Fracture toughness	•Isotherm •Composition •Desorp. rate •Diffusion rate •Strain rate •Particle size

Elements of current project

- Statistical model of spatial variability
 - measure permeability and strength
- Sensitivity to variability
 - apply quantitative models
- Input to risk analysis
 - integrate with outburst risk management

Measured variability of permeability and porosity

Measuring variability of permeability and strength

Strength measurement on site

- rapid, portable
- assess spatial variability

Core Permeability

Measurement of permeability under simulated in situ stress

Well Test Schematic

7 in-seam holes @ 2m spacing, 35m depth from rib, 9 interference tests

Plus

Pair of in-seam holes, upper and lower, vertical perm. component

Well test equipment developed for this project

System schematic

Inflatable packers

Well test hydraulic equipment

IS approved hydraulic power pack

Fluid injection pump

Packer inflation pumps

Coal pre-saturation

objective is single-phase flow conditions during well tests

Kh = 0.1md, Kv = 0.01md $\Delta p = 0.5MPa$, t = 7 days Kh = 0.1md, Kv = 0.01md $\Delta p = 0.5MPa$, t=14 days

Well test simulations: long horizontal well in extensive medium and layer of finite thickness

Extensive medium

Finite thickness

Well test simulation: short horizontal well in layer of finite thickness

Pore pressure contours@ 1000s injection

Well pressure vs $\log (t/t_0)$

SUMMARY₁

General

- There is scope to refine and expand the threshold criteria, incrementally
- Safety is paramount
- Quantitative models have been developed (ACARP C6024 and C9023)
- Better understanding of CO2 in coal is required (ACARP C13012, current)
- Permeability and strength have potential for expanding the criteria
- Methods to account for spatial variability of data are needed

SUMMARY₂

Current stage, ACARP C11030

 Measurement of permeability and strength at field and laboratory scale

Near future

- Spatial variability analysis
- Quantitative modelling of sensitivity to variability

Longer term

Application to outburst risk assessment and management

