

Operators Perspective on Managing Outbursts

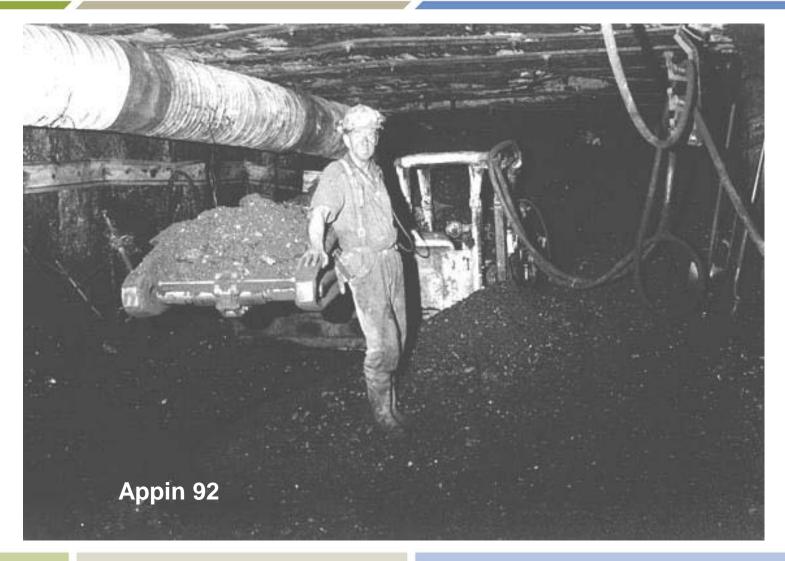
Presented By John Calleja West Cliff Colliery

What Is An Outburst?

Violent ejection of gas and/or coal or rock with the potential to cause injury or death through physical harm or irrespirable atmosphere.

Outbursts

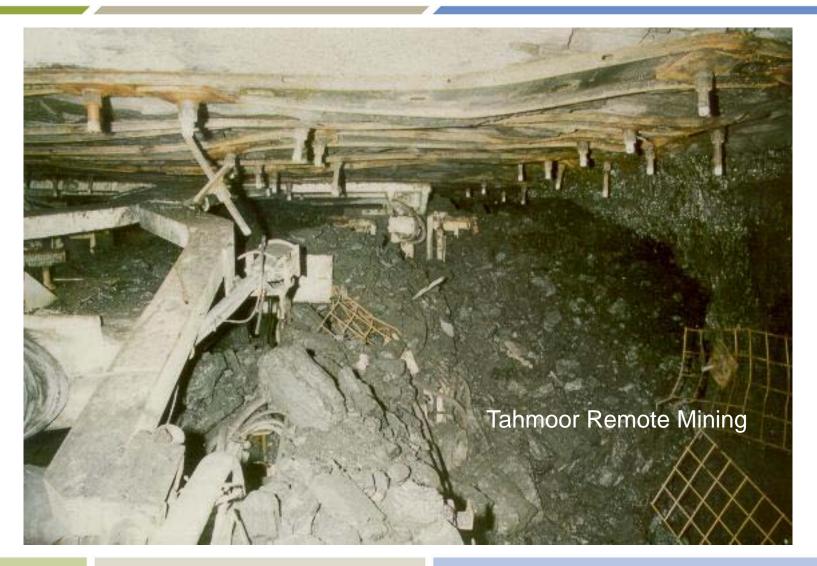
Colliery	No. of Outbursts	Size in tonnes	Gas	Geological Structure
Appin	22	2 - 88	mainly CH ₄ & CO ₂ on dykes.	Predominantly strike slip faults; mylonite zones.
Brimstone	2	30	CO ₂	Mainly dyke related structures with strike slip movement.
Cornimal (closed)	4	12	CH ₄ & CO ₂	Sheer zone associated with minor faulting & dykes.
Kemira (closed)	2	60 - 100	CO ₂	normal fault with mylonite.
Metropolitan	37	1 - 150	mainly C0 ₂ with minor amounts of CH ₄	Predominantly with dykes & faults that exhibit slicken sides & mylonite.
South Bulli	7	1 - 300	mainly CO ₂	Strike slip faults with mylonite; dyke zones & thrust faults.
Tahmoor	88	5 - 400	mainly CO ₂	Mainly strike slip faults; with dykes (110° - 135°) & thrust faults: mylonite usually present.
Tower	19	1 - 80	mainly CH4	Mainly strike slip faults with dykes.
West Cliff	250	4 - 350	mainly CH4 with CO2 to the NE development	Predominantly strike slip faults (100° - 110°) with slicken sides & mylonite; dykes and thrust faults have been associated with outbursts.



Fatal Outbursts

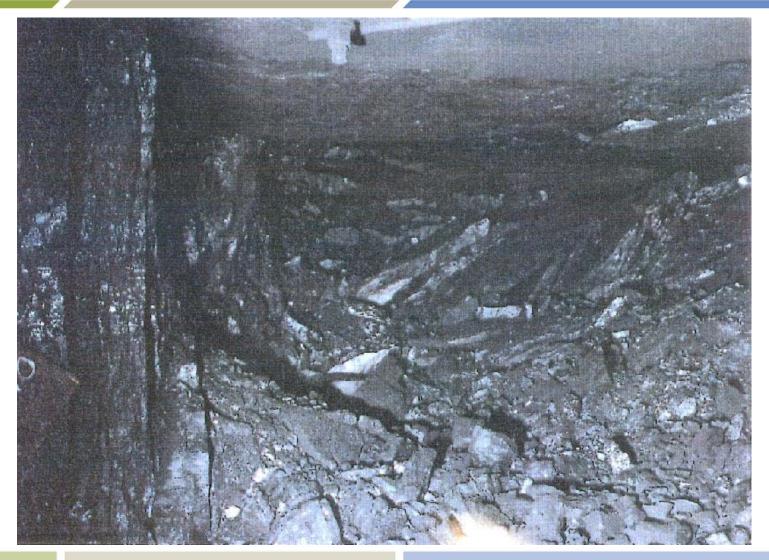
COLLIERY	DATE	No. KILLED	SIZE (tonnes)	GAS	STRUCTURE
Metropolitan	10 June 1896	3	Unknown	CO_2	Dyke and soft fault zone
Metropolitan	27 July 1926	2	140	CO_2	Fault with 5m throw
Metropolitan	2 December 1954	2	90	CO ₂	Normal fault with 0.3m throw
Tahm oor	24 June 1985	1	400	CO ₂	Behind a dyke associated with strike slip movement
South Bulli	25 July 1991	3	300	CO ₂ & CH ₄	Thrust fault with 35 cm of mylonitic coal; very high gas pressure.
West Cliff ★	25 January 1994	1	350	CO ₂	Intersection of 2 strike slip structures, 30 cm of mylonitic coal.

Ejection of Coal or Rock



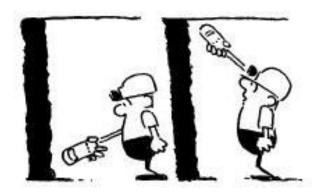
Ejection of Coal or Rock

Ejection of Coal or Rock



Cone Shaped Cavity

Cone Shaped Cavity



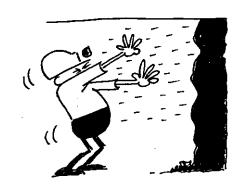
Mechanics of Outbursts

Factors Associated With Outbursts

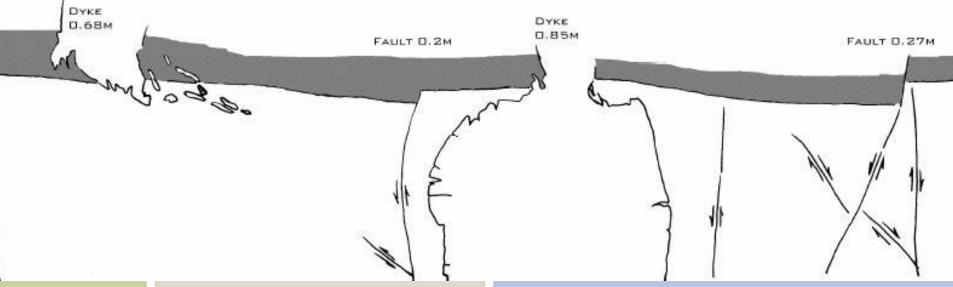
- Gas
 - Pressure (mPa)
 - Content (m³/tonne)
 - Composition (%CH₄ %CO₂)
- Structure
- Stress
- Coal Strength

Describe the warning signs in two words:

UNEXPECTED CHANGE!



- More cutters than usual
- Change in direction of cutters
- Greasy backs
- Reddish brown tinge
- Poor roof or ribs
- Good roof or ribs
- Sudden seam dip
- Abnormally hard or soft face
- Chemicals being blown out from rib holes


- Conical Cavity in the face or ribs. (small outburst)
- Mylonite zones
- Other geological features such as faults or dykes
- Calcite bands
- Marked increase or decrease in noise from the strata
- Gas
- Coal spitting from face or face bulging
- Wet ribs or face

Faults & Dykes

What to do If Warning Signs Are Noticed?

- Unexpected changes in the mining environment may indicate the potential for an outburst to occur.
- If these warning signs are unexpected:

Stop Mining and Inform The Supervisor

The Outburst Management Plan - Protection

What happens when we "STOP and REPORT" outburst warning signs to the Section

Supervisor?

Procedure When Mining Has Ceased Due To Warning Signs

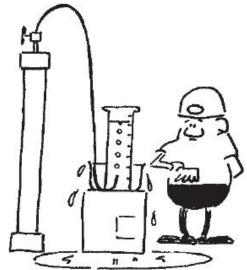
- Inspection by Mining Supervisor.
- Inspection by Undermanager if warranted.
- UMIC & Geologist investigate if warranted.
- Authority To Mine is revoked if Geologist is required.
- Outburst Risk Review Team considers Geologists findings.
- Outburst Risk Review Team may authorise normal mining or other requirements such as further drilling.

The Outburst Management Plan

What else will we find in the Outburst Management Plan?

The Outburst Management Plan

1. Prediction

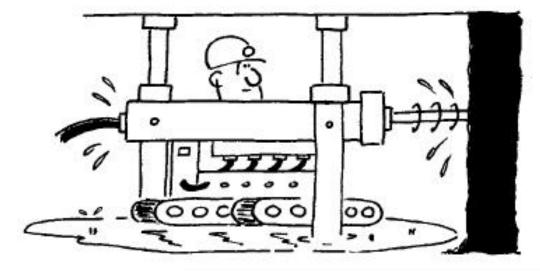

2. Prevention

3. Protection

The Outburst Management Plan - Prediction

Prediction

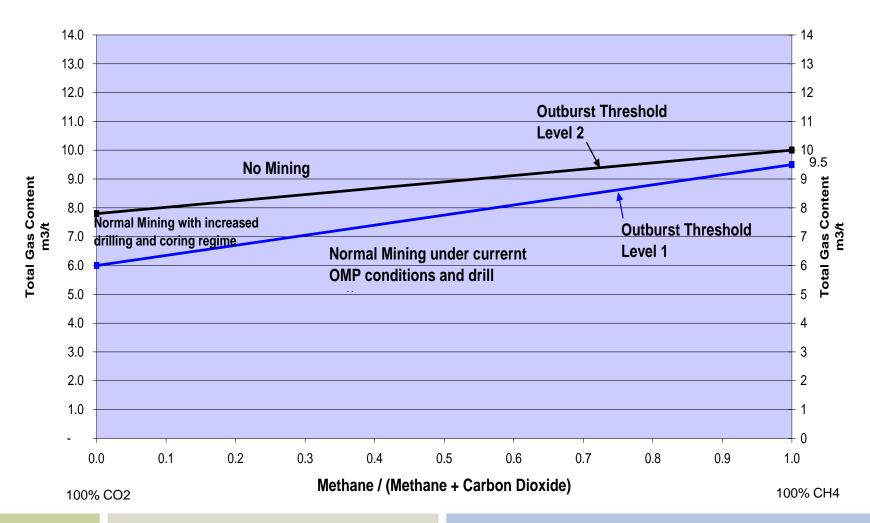
- Drill hole logs (from survey) used to identify and map structures.
- Core samples.
- Geological mapping.
- Surface 2D & 3D seismic.
- Outburst Risk Review Team meetings.


The Outburst Management Plan - Prevention

Prevention

- Drilling and Gas Drainage.
- Reduce gas content below Outburst Threshold Limits.

(Insufficient gas pressure left to generate an

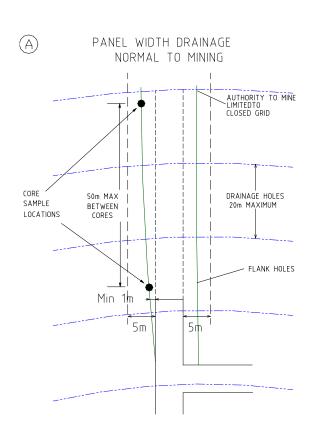

outburst.)

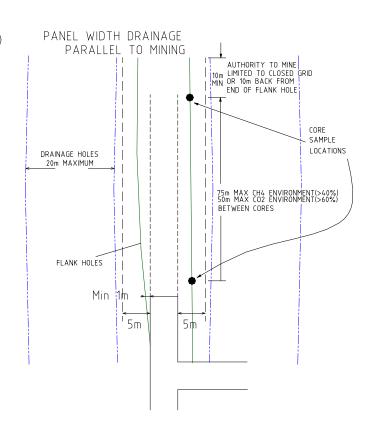
The Outburst Management Plan: Prevention- Threshold Chart

West Cliff Outburst Threshold Chart

Gas Drilling - Design Basis

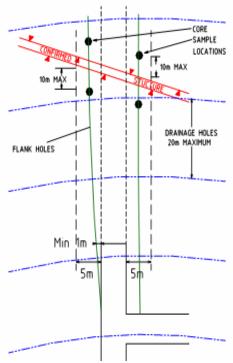
 When mining areas above Outburst Threshold level 1 but below Outburst Threshold Level 2, in a CO2 environment, the boreholes are spaced to a maximum of 20m and cover the entire area within that zone - with only one branch per hole.

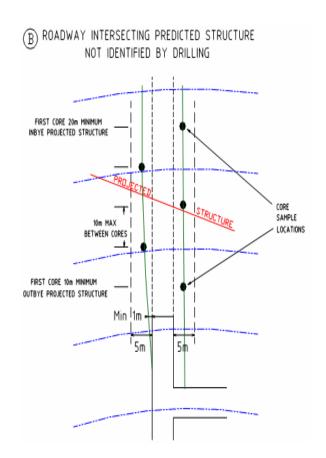

Coring Design


	BELOW THRESHOLD LEVEL 1	BETWEEN THRESHOLD LEVEL 1 & 2		
No Structure	150m spacing in a CH ₄ environment and 100m spacing in a CO ₂ environment on the basis of worst case sampling	75m spacing in a CH ₄ environment and 50m spacing in a CO ₂ environment on the basis of worst case sampling		
Projected Structure (by geologist) not confirmed by drilling	Routine closely spaced samples as determined by the Outburst Risk Review Team	Within 10m either side of structure on both sides of the roadway in all roadways at 10m intervals, starting 10m before predicted zone.		
Confirmed Structure	Maximum 10m either side of structure for each road to be driven.	Within 10m either side of structure on both sides of the roadway in all roadways.		

Drilling / Coring Plan – No Structure

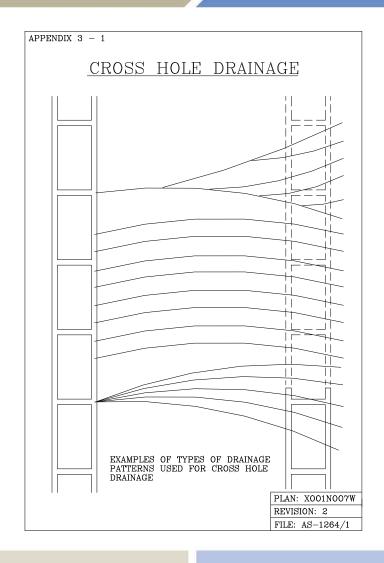
Core Locations – No Structures (Above Threshold Level 1 & Below Level 2)

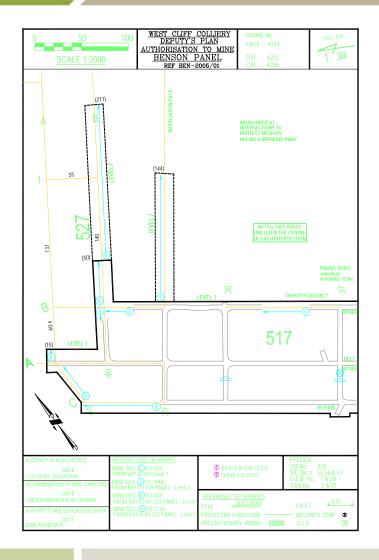


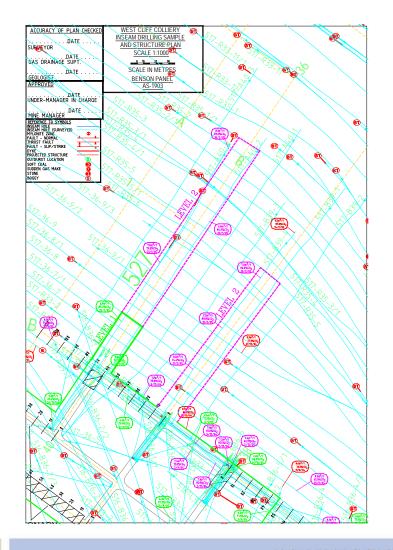


Drilling / Coring Plan – With Structures

Core Locations – **With Structures** (Threshold Above Level 1 & Below Level 2)


A ROADWAY INTERSECTING CONFIRMED STRUCTURE (IDENTIFIED BY DRILLING)


Typical drilling plans – drainage patterns



Prevention

The Outburst Management Plan - Protection

- Routine training in Outburst Awareness
- The identification of outburst warning signs
- Use of First Response Rescue and Escape equipment
- The ability to suspend mining and initiate an inspection of the face area at any time should outburst warning signs be observed

What To Do If An Outburst Occurs

Self Escape

- Familiarity with equipment (SCSR)
- Speed is critical
- CO2 toxic to breathe @ 5-10%

Consider Rescue Options

- No one is required to perform a rescue
- Risks must be considered
- Leadership
- Confidence
- Have a plan
- Where is a place of safety
- Back up people required
- Equipment required
- Restore ventilation
- Recovery of situation

