Borehole permeability damage and its impacts on gas drainage

28 June 2007

Luke Connell & Rob Jeffrey CSIRO Petroleum, Clayton

Outline

- What is formation damage?
- Damage mechanisms in coal
- Evidence of damage
- Investigations into damage mechanisms
- Conclusions

Acknowledgement

This work is supported by ACARP under project C14038

Background

Borehole permeability damage

- A region within the formation in proximity to a borehole with a reduced or enhanced permeability
- Also know as borehole skin

Background

- Positive skin acts to impede flow into the borehole
 - Inhibit gas and water drainage
- A common problem with wells in petroleum engineering
- Poorly understood in coal
- Project objectives
 - Review the potential role of borehole skin in coal and identify ways to manage it

Hypothetical example – SIMED simulation of gas drainage rate with respect to skin factor

Gas Production Rate

Cumulative Gas Produced

Causes of formation damage

A lot of experience with wells in non-coal formations

- · Common mechanisms with oil and gas production
 - Drilling fluid/mud interaction with the formation, clogging the pore system and lowering perm
 - Migration of drilling fines into the formation and clogging of pore system (overbalanced drilling)
 - Mineralization
 - Groundwater saturated in dissolved minerals
 - Precipitation on the borehole wall/near borehole region
 - Relative permeability effects
 - · Gas blocking
 - Presence of gas in cleat system lowers water relative permeability and thus rate of water outflow
 - · Water blocking
 - · Water blocks gas flow

Little information available on coal

Other possibilities – important for coal?

- Possible fines migration during production and clogging of cleat system near borehole
 - · fines production during gas desorption?
 - · Lack of information on this
- Permeability that is stress sensitive
 - Clearly demonstrated in a wide range of studies
 - Will mean a permeability reduction towards gas drainage boreholes but unknown effects

CSIRO Formation damage in coal

Mechanisms for formation damage

- Drilling induced
 - Drilling fines difficulties in cleaning out
 - Drilling fluids muds
- Drainage induced
 - mineralisation

Evidence for skin in gas drainage boreholes

Jeffrey and Meaney 1997

- Combination of production and well tests at Dartbrook
- Vertical well significant skin (~8)

Jeffrey et al. 2005

- Skin estimated from gas drainage pre and post fracture treatment of underground drilled horizontal well
- skin (~20)

Other unpublished modelling work (personnel communication)

- Large skins experienced for some MRD holes in coal (extreme case surface to inseam ~60-80 – determined from reservoir simulation history matching)
- Recent West Cliff well testing work (skin -0.8 0.9) (Wold, Connell and Choi, 2007)
 - Seam drained of gas and water
 - skin determined by injection test (water injected into borehole)
 - small effective stress gradient around well; i.e. injection pressure
 - Test should provide a good measure of skin because of the use of monitoring well data from injection test in analysis

Evidence for formation damage in coal

- Dartbrook Jeffrey et al. (2005)
 - Low permeability coals high CO2 content
 - under gas drainage using inseam boreholes sand propped hydraulic fractures were placed at regular intervals
 - Induced fracture bypassed a near-borehole skin
 - Gas rate increased x100

 Large skin factor of ~20 determined through history matching using SIMED

Evidence for formation damage in coals

A review was conducted of well test reports

- Well tests to determine permeability often also report the skin factor
- A large number of well tests as part of coal seam methane resource evaluation have been conducted and are publicly available
- NSW DIGS database
- QLD QDEX database
- These are (almost all) single well tests in vertical wells involving saturated water flow (injection-falloff tests)
 - May not reflect skin during gas drainage
 - Will indicate skin as a result of drilling or water flow related processes
 - Involve relatively small pressure gradients (compared to gas drainage)
- 153 well tests determined the skin factor

Evidence of formation damage in coal

Well test results

Mineralisation

For many coals

- Considerable evidence of mineralisation in cleats & fractures
- Potential for precipitation to occur within gas drainage boreholes
 - In regions where the groundwater is saturated with minerals small evaporative losses lead to precipitation
 - Water chemistry changes brought on by pressure change can lead to precipitation of some minerals. CO2 comes out of solution rapidly with a drop in pressure.
- Minerals could act to impede gas/water flow into the well

Gas blocking

The rate of combined flow of water and gas is determined by their relative permeabilities

- Initially the seam is saturated with water
- Lowering the pore pressure leads to gas desorption – to start with – the region closest to the well
- The presence of gas lowers the flow rate of water
- Water within the seam is then "held-up" and gas drainage delayed

Stress sensitivity of coal permeability

 Coal permeability varies with effective stress

 Lowering the pore pressure to drain coals leads to increased effective stress towards the borehole

Role of permeability vs effective stress in gas drainage

- Simulations of gas drainage using SIMED
 - Using permeability vs effective stress relationships established from field work
 - Investigations into the variation with depth
- If the perm vs stress behaviour is not correctly accounted for it would be characterised as skin in the analyses

Permeability(mD) Against Distance(m) At Different Depths With the Effect of Stress

Relationship Between Gas Rate(m^3/day) and Time(day) at Different Depths With the Effect of Stress

Coal fines migration during drilling

- Fines produced during drilling are forced into the surrounding coal clogging cleats
- Overbalanced drilling
 - fluid pressure in the borehole > formation
- Underground inseam boreholes
 - Are drilled open to atmosphere, so underbalanced
 - However water is supplied at pressure to the drill motor
 - Water pressure should be < formation pressure
- Medium Radius Horizontal
 - Potential for overbalanced conditions to develop
 - A key issue if these boreholes are to be effective for gas drainage
 - Most drilling companies have become aware of this use techniques that lower the borehole pressure
 - More difficult to clean out
 - However the skin factors can only be determined through history matching – needs careful simulation work – data is very limited
 - We are not able to carryout well tests on MRD holes

Conclusions

- Positive borehole skin will act to impede gas drainage; increasing drainage lead times etc
- There is evidence that skin can (sometimes) be significant in coal drainage boreholes
- A review of Injection-falloff testing of vertical boreholes for NSW & Qld found 10-15% had skin factors >10 (peak gas rate for a skin factor of 10 reduced around 50%)
- Information on inseam boreholes and MRD holes is very limited
- Overbalanced drilling conditions will act to increase skin through coal fines migration
 - Pressure in MRD holes during drilling needs to be carefully monitored along the length of the hole
- For inseam holes the water pressure at the drill motor needs to be considered
- Need to characterise the skin in MRD holes and relate to drilling practices